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Charge response 1o Ionization and the transport of charge

Observation of the motion of electrons in noble liquids is the primary means of
event tracking and calorimetry in TPCs. All of the processes that contribute to the
production and transport of electrons and ions are of interest for the optimization
of TPCs.
|. Specific ionization as a function of specific energy loss and electric field
especially at high energy loss (the recombination factor)
2. Diffusion of electrons (transverse & longrtudinal) as a function of electric field
3. Attachment cross sections (rate constants) of electrons for all impurities
4. Mobility of positive ions (including the ions of impurities)
5. Optimization of transport properties with dopants, as has been done for
gaseous detectors
6. Development of structures and conditions for gain in noble liquids
/. Optimization of photocathodes as a high brightness source of electrons in
noble liquids
8. Analysis through Monte-Carlo simulations of optimization of signal processing
and detector performance.
9. Henry's law constants for common impurities



Properties of L Ar — Response 1o Ionizing radiation
Relevant fundamental properties of LAr:
~Electron Diffusion

~Light scattering and absorption
“Electron attachment
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Flectron

Diffusion in LAr

Very few results have been reported on the diffusion of electrons in LAr.

E. Shibamura, et al., Ratio of diffusion coefficient to mobility for electrons in liquid argon, Phys. Rev. A20 (1979)

2547.

T.Doke, Recent Deveoplment of Liquid Xenon Detectors , NIM 196(1982)87-96(E > 1.5 kVIcm)
S.E. Derenzo, LBL Physics Note No. 786 (1974) unpublished . (E= 1.4 & 2.7 kVIcm)

S.E. Derenzo et al., Test of a liquid argon ion chamber with a 20mm RMS resolution, NIM 122 (1974) 319 .
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FIG. 7. Field dependence of the ratio eD/p in liquid
argon. The symbols Ao, v, B, and @ represent the pre-
sent results. Points ¢ and A are the results according
to Derenzo (Ref. 9) and Lekner (Ref. 7), respectively.
Solid curve shows the results for gaseous argon. In the
upper horizontal scale, N is the atomic density in liquid
argon (2.1 X10% cm™3).
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No direct measurement on transverse diffusion under
E~0.5kV/cm

Only results on longitudinal measurement reported by
ICARUS groups may contain large error.



Flectron Diffusion In Strong Electric Fields

Diffusion of electrons in strong electric fields is not isotropic.
mean free path is independent of velocity: collision rate proportional to a power of velocity:

Figure 1. The dimensionless diffusion coefficients d, = NDou(kT/m) *'? and . . . . . . . .

d. = ND ou(kT/m)~"? as functions of the dimensionless field parameter glglge 21; t;r hle du_megF 10;11ess I:i dfusmnl §9§_ﬁig1ent & (gquatlon fg)) and the‘ ratio

& = (E/N) (e/kTow) (M/m)*'2, Asymptotic values for large and small & are shown as i/D. of the o.ngltu inal to t € 'atera iffusion coefficient for t e case of a strong
electric field and a collision frequency vy o« o7, as functions of .

broken lines.

H.R. Skullerud, Longitudinal diffusion of electrons in electrostatic fields in gases, J. Phys. B2 (1969) 696.
J.H. Parker and J.J. Lowke, Theory of electron diffusion parallel to electric fields. I. Theory, Phys. Rev. 181 (1969) 290.

By solving Boltzmann transportation equation, theory predicts the longrtudinal
diffusion and transverse diffusion coefficient are different. Transverse diffusion is

more significant than longrtudinal diffusion.

The distribution of electrons in the originally point-like cluster is:

N(f) B n, exp{— (x' + - )} exp| — (: + v(,f)' }

 e(4nD,t\4xD, 1) 4D, 1 AD,1




Drift and L ongitudinal Diffusion Measurement
Drift velocity 1s measured by a time-of-flight method.
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Experiment Setup

|, The Experiment Setup is located at High Bay area.
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Cryogenic Operation

|. The Operation includes 3 major processes.
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Cryogenic System Operation: LN2 Filling

2.

LV

The cooling is provided by pressured LN2 filling into the
recondenser.

A batch fill approach is used. Filling circle 1s ~every|.5hr.
The intrinsic heat load of the system i1s ~50W. Heater can

add up to another | 50VV.
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Cryogenic System Operation: LAr

|. [H2O] ~60ppb, [N2]~8-9ppm sampling from
iquid right after inrtial fill. No moisture data has
een taken after that in order to maintain LAr
evel.

H20] < |ppb after / days.

. Estimation of [H20] based by the LAr cleaning Z . t,.=4.2hrs
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System Modeling

|. In order to simulate the charge signal analysis the experimental data. A model
s developed including all the components of the system.

—)@ e Oscllloscope

2. The model is basically a series of convolutions processes by treating each
individual module as a filter:

out (t) lectron (t) ® H preamp (t) ® H Shaper( )

(t) Is the transfer function in time domain




System Modeling: Preamp Modeling
|. The preamplifier response Is also separated into several convolutions

Processes.
2. The model agrees with the preamp response to the pulser input data.
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System Modeling: Preamp Modeling
|. The preamplifier response Is also separated into several convolutions

ProCesses.
2. The model agrees with the preamp response to the pulser input data.
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System Modeling: Preamp Modeling
|. The preamplifier response Is also separated into several convolutions

Processes.
2. The model agrees with the preamp response to the pulser input data.
Preamp Impulse Response Preamp Step Response
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System Modeling: Shaping Amplifier Modeling

|. The shaping amplifier is simulated as a CR-RC" filter with a transfer function as

ST

1+sT

H(s)z(

[ts iImpulse response Is
Step response Is

|

L‘i{H(S)}
H(t)= j L' {H(s)}dt

2. The pulser signal Is appliegj into two

different shaping amplifiers and the

model with single stage CR-RC shaping

agrees with the data.
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QE Comparison

|, The QE was measured in Vacuum and GAr to compare the performance of the
photocathode.

2. The QE of the photocathode does not change much after a cold/warm circle.

The upper surface of the sapphire substrate is very dirty.
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Charge Signal

|.The charge signal peak shifting behavior has been observed during LN2 filling.
2. Turning on the heater immersed in the LAr has the same peak shifting effect.
3. The signal shifting Is repeatable.

4. For convenience, | name the two peaks by Early/Late.
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Charge Signal

The charge signal Is measured with minimum drift distance 6.5mm in this

round.
2. Two sets of signal were observed in LAr.

3. [t s caused by different Ar phase.
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Electron temperature
|, The electron temperature describes the electron diffusion.
eD, 2e, Az
£ =—2; 0=
Il’le ED

2. Need to establish longer distance measurements to compare the diffusion.
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Anode Laser test Resultsgyr Preamp Thomas’ Preamp

. Anode was tested with Anode Laser Response Anode Laser Response
direct laser illumination in
air to investigate the
mysterious peak.

2. Thelaseris |5ul, 10Hz, with
shaping time of 200ns,
Gain=250.
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Electric Field Uniformity Problem

1AW

Electric Field calculated by Maxwell 2D indicates very

nonuniform electric field.

The two plots on the left show the calculated field

d|str|but|on with 0.831kV to 0.831cm HV voltage applied.

"he electron drift velocity in GAr and LAr are known. ;°
ne expected drift velocity can be calculated.
ne Influence of field uniformity to the drift velocity is
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Electric Field Uniformity Solution

|, The electric uniformity i1s dominated by the displacement between the

photocathode surface and the holder plate.
2. Two solutions are applicable.

Solution 1:

|, Flip the holder plate and weld

the photocathode to plate. 5

2. S-bond technologies can
provide the service with
~ | week lead time, cost [-2k.

2

&

N

\\2.477 [.097

Solution 2:

Using a sapphire substrate
with step edge.

Guild Optical

Associates LLC

can supply the customized
cut sapphire with 4-6bweeks
lead time, cost for 2-5pics Is

$1485.




Transverse Diffusion Measurement

Transverse diffusion will be measured by the similar method as |

E. Shibamura, et al., Phys. Rev. A20 (1979)

2 2 2
b 1, _exp |- X +y exp| - (z+v,t)
A D t(4n D, t) 4 D, t A D, ¢t
Can be written as: " e :
n(r) = V2R3 CXp [_F] g
rP=x" 4y (2 v, R® =4D,t g
The number of electrons n, that arrive at the collector ¢,
can be calculated by integration over each collector.

R=./4D,1

R s the transverse radius of the electron swarm

eD, R*E RV

= —_— =

u 4t v, 4d’

*Small spot size of laser is crucial for transverse diffusion measurement
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Conlusions:

. The minimum electron drift distance measurement are
finished.

2. Two more similar measurements with longer drift
distance are planned.

3. Some modifications are needed for the future
measurements.

4. Transverse diffusion measurements are the next step.




Signal Shape
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